Exercise 32

(a) Sketch the graph of $f(x)=\sqrt{6-x}$ by starting with the graph of $y=\sqrt{x}$ and using the transformations of Section 1.3.
(b) Use the graph from part (a) to sketch the graph of f^{\prime}.
(c) Use the definition of a derivative to find $f^{\prime}(x)$. What are the domains of f and f^{\prime} ?
(d) Use a graphing device to graph f^{\prime} and compare with your sketch in part (b).

Solution

Rewrite the function as $f(x)=\sqrt{-(x-6)}$ and notice that the parent function is \sqrt{x}.

Replacing x with $-x$ reflects the graph over the y-axis.

Replacing x with $x-6$ shifts the graph to the right by 6 units.

The domain of $f(x)=\sqrt{6-x}$ is

$$
\begin{gathered}
6-x \geq 0 \\
-x \geq-6 \\
x \leq 6 \\
\{x \mid x \leq 6\} .
\end{gathered}
$$

Below is a graph of $f(x)$ and $f^{\prime}(x)$ versus x.

Calculate the derivative of $f(x)$ using the definition.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{6-(x+h)}-\sqrt{6-x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{6-x-h}-\sqrt{6-x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{6-x-h}-\sqrt{6-x}}{h} \cdot \frac{\sqrt{6-x-h}+\sqrt{6-x}}{\sqrt{6-x-h}+\sqrt{6-x}} \\
& =\lim _{h \rightarrow 0} \frac{(6-x-h)-(6-x)}{h(\sqrt{6-x-h}+\sqrt{6-x})} \\
& =\lim _{h \rightarrow 0} \frac{-h}{h(\sqrt{6-x-h}+\sqrt{6-x})} \\
& =\lim _{h \rightarrow 0} \frac{-1}{\sqrt{6-x-h}+\sqrt{6-x}} \\
& =\frac{-1}{\sqrt{6-x}+\sqrt{6-x}} \\
& =-\frac{1}{2 \sqrt{6-x}}
\end{aligned}
$$

The domain of $f^{\prime}(x)=-\frac{1}{2 \sqrt{6-x}}$ is

$$
\begin{gathered}
6-x \geq 0 \quad \text { and } \quad 6-x \neq 0 \\
6-x>0 \\
-x>-6 \\
x<6 \\
\{x \mid x<6\} .
\end{gathered}
$$

